If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+18a+13=0
a = 1; b = 18; c = +13;
Δ = b2-4ac
Δ = 182-4·1·13
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{17}}{2*1}=\frac{-18-4\sqrt{17}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{17}}{2*1}=\frac{-18+4\sqrt{17}}{2} $
| -3.6r=-19.2-9.6r | | 7x-19=2(x-3) | | -4z+16=-2z | | 2(2p-3)=3p+5 | | 20-19b=-18-17b | | -19+8g+5=20+6g | | 4.3x-16.7x=429.5 | | -7.09+4.9w+12.3w=18.6w+7.75 | | 4x^-1=48 | | 4(3w+1)/5=-7 | | 18+8d=-9+6+5d | | a2+6a+5=0 | | (4(3w+1))/5=-7 | | 6t+2=18+14t | | 11-5x+4x+3x=18 | | -1-7c=-10-7c+c | | 4-2m=-4m-8 | | -8d-5=-3d+10 | | -1+v=2v-8 | | 5b+5=10b | | 6y-11=3y+5 | | 8(x+3)=-4(2x-2) | | 4m+5=11+4+6 | | 5(3.2+m)-(8m-9.1)=-5m | | 6t=9+5t | | 12-9x=-105 | | 2k+6=3(2k-14) | | 13.3p+17.3=376.4 | | -3(e-1)=e+11 | | 6p=46.2 | | 1.4+3d=14.3 | | 1.3g-1.9=11.1 |